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I. INTRODUCTION

This preliminary study considers the reflection of an incident wave
from the oblique shorted end of a rectangular waveguide (Fig. la). The
motivation for the investigation was prompted by the desire to obtain reflec-
tion and transmission coefficients for an oblique slab (Fig. lc) having a
negative dielectric constant e 1 A complex dielectric constant, ¢ 1’ is also
of interest since the slab would macroscopically represent a plasma. A
knowledge of reflection and transmission characteristics would be useful in
attempting to use microwaves for plasma diagnostics. A contained plasma
differs markedly from a uniform slab but the effects of obliquity are still of

interest.

It was surprising to find that, despite the wealth of papers on micro-
waveguide propagation, the discussion of oblique incidence appears to be
limited to plane EM waves. Indeed, an extensive library search failed to

disclose any reference to oblique reflections in waveguides.

Since it can be demonstrated that no combination of plane EM waves
obliquely incident on a slab or interface can be combined in such a way that
the boundary conditions at the walls of the waveguide are satisfied, it appears
that the effect of obliquity is to produce complicated mode conversion. To
examine this in more detail, we consider the problem shown in Fig. la rather
than that shown in Fig. 1b.

This eliminates any transmitted waves. In fact, the principle conclu-
sion of this note is that all evanescent modes possess a common phase which,
in turn, determines a phase shift of the single allowed propagating mode.
This conclusion depends directly on the fact that energy is conserved in the
lossless guide and would not be correct when transmitted waves are present.



THE OBLIQUE SHORTED END
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Fig. 1. Oblique Interfaces in Rectangular Waveguides
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II. BASIC EQUATIONS

For the right-hand set of axes xyz, the origin of coordinates is such
that z = 0 locates the lower edge of the slab. The wave is incident from the
left and the waveguide dimensions a,b are chosen 8o that only the lowest
que propagates. For the Ho or TEo mode and a harmonic time factor
e-mt. the wave incident in free space is represented by the electric and

magnetic field components

E = A sin qyelrz

8E
N S S AP ire
Hy = - Tor B (A sin qye %)
3E .
_ 1 x__9q iz
H = by C 1 (A cos qye  °)

where Maxwell's equations for free space reduce to V- H=V-E=0 and
VXE = iwpﬁ: VXH = -iweE. The first two of these are identically satisfied.
The third equation was used to derive Hy'Hz from Ex‘ The last equation

reduces to the wave equation

2 2

3 3 2. _

(_za +—82+k)Ex-0
y z

where kZ = wzeop.

2. K2, For homogeneous isotropic

From the wave equation, qz + T
media, the field quantities B = p_ﬁ and D = ¢ are not required. The
requirement for a wave propagating to the right is " real and > 0. The

reflected wave field corresponds to I' real and < 0.



The boundary conditions on the walls of the guide reduce to Ex =0,
for y = 0,b, which can be satisfied by choosing qb = nv where n = 1.0 for
the lowest (Ho or TEO) mode

For any mode, q, = nn/b and the corresponding wave number in the z

direction is:

In the x direction, the guide dimension a is selected to allow only this mode

of operation. To maintain this mode requires that

2

315)<4

<an (2

in order that I" is real. For n 2 2,T becomes imaginary corresponding to

evanescent modes.

It is convenient to introduce the dimensionless length s = ny/b = qy so

the incident wave field of unit amplitude is:

]
12% a-1
E_ = sin ge
- i a-1
Hyz—B‘/a-l 8in se
izg -1
i Ipve



The reflected wave field is:

-izg Na-1
Ex = A1 sin se

N
-iz = Na-1
. n . b
Hy-mAla-lsmse

.
b - iw A -1z-1_;~/o.-1
z= Bog A cos se

For higher evanescent fields, we have

22na

E2 - A sin nse
x n

T 2
gt - inm 'an -a zZpNn -a
n

The positive square root is to be used throughout and the sign of the
z term of the evanescent fields is determined by the requirement that the
fields decay to the left.

It remains to satisfy the boundary conditions on the shorted end which

reduce to

for z = Ky ) 0<y<b
H 8in6-H cos® =20
z Yy



where K = cos 8. At normal incidence, K = 0. The two boundary equations

become:

0 = sin s(e 1

o
. . / 2
iKsvNa-1 + A e-1Ks\]a.-l)+ E:An sin nseKs n -a
2

0 = iK sin sNa-1 (eiKs Ja-1 -A e'i'Ks 'a'l)

1
200: / 2 Ks«/nz-a
+ K Ansinns n -ae
2

(eixsm e-iKs~/cT-'1)

+ A

+
cOos s 1

0
’ 2
+ E nAn cos nseKs n-a

2

The second boundary equation is obtained by discarding the constant factor
-im/bwp sin 8 and forming (Hz - KHy) = 0, Differentiation of the first boundary
condition leads directly to the second boundary equation. For normal
incidence, K = 0 and all evanescent modes vanish, Both equations reduce to
1+ A1 = 0 so the reflection coefficient is simply A1 =-1.0 =ei" and the phase
of the reflected wave is 180°.

When there is oblique incidence, the absence of transmission in the
problem means that energy is conserved, and, consequently, far to the left,

the reflected amplitude continues to be 1. 0. The effect of the shorted end



produces only a phase shift of the lowest reflected mode,

write this in the form

A, - JAlm-2n) __ -2in

-7a

It is convenient to



III. ANALYSIS OF THE PHASE

Rewriting the boundary equations with Al = -e'21)‘ in the form

-sin s |e

o)
. . [ 2
[ -iKs~Na-1 _e-1(Ks'\/a-l+2)\)] - 2 :An sin nseKs n"-a

-iK sin sNa -1 1[ iKs~d- -1(Ks~/ 1+2X)] - cos S[eiKs'Jo.-l ) e-i(KS‘\/rl+Z)\)]

E A sin nsK\/n n® "%y Z nAn cos nseks nz-a

suggests the further reduction

®
i / 2
-sin S(Zie-l)\)[sin (KsVa - 1 +1\)] = E An sin nseKs n"-a

-iK sin s(Ze-l)\)'\/a- 1 [cos (Ks\Na-1+\)] - cos s(Zie-]')\)[sin (KsNa = 1 +1\)]
o) ©
/ 2 ’ 2
= E Ann cos nseKs no-ay E An sin nsK'\]nz -a eKS n-a
2 2

The terms on the left of both equations represent the propagating modes and
the ratio of real to imaginary terms is tan \, independent of s. The complex
amplitudes of the evanescent modes An on the right must have the same
structure if the sum on the right is to equal the terms on the left of both

equations.



It follows that every evanescent mode possesses the same direction.
Writing
in

_ imoom -
An-pne +12 i\ = P,ie

the boundary conditions reduce to

®
/ 2
2 sin s sin (KsNa - 1 + 1) = z :pn sin nseKs n -a
2

2 sin s(KNa - 1) cos (KsNa - 1+ \) + 2 cos s sin (KsNa - 1 + 1))

w — Yo [
= E an\/nZ - @ sinnge<SVR "0 E pn cos nseXsVn -¢
2 2

The interval 0 < s < T may be divided into n intervals and the above sums
truncated to construct n simultaneous equations for determining the amplitudes
P and the phase angle \. As n - o, we approach a generally unsolvable set
of equations such that each Ph is the ratio of two infinite determinants. The
structure of these determinants can be examined to lead to the same con-
clusion derived above--that all evanescent modes have the same phase angle
but for a factor eiﬂ. The result depends only on the fact that the elements of
the determinant are real for the evanescent modes while the elements of the
propagating modes are complex., To clarify this statement, the structure of

these equations can be used to show that

_.iC
AT A TIB
A - _-iD

3 A +1iB

etc.
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where tan A = B/A, Here we know only that A, B, C, D are real but this is
sufficient to determine that the phase of AZ’ A3. e An is ¢n where
tan ¢ = A/B = cot \.

The simplest way to represent this result is in terms of the Argand-
type diagram shown in Fig. 2. Note that since some evanescent amplitudes
may be negative the phase is either (7/2)-\ or (3w/2)-\. The diagram also

generates the equation

@
E pn=25mx
2

It is not possible to determine by a physical argument which evanescent
mode has the phase (w/2)-\ or (3n/2)-\, but preliminary calculations strongly
suggest that the phase angle is, in fact, (37/2)-\. In Fig. 2, this means all
vectors?f; are directed from A to B and is equivalent to the assumption that
the amplitudes P, 2re all positive. However, this assumption is not utilized

in the subsequent steps.

The removal of the phase angles leads to the two equations
@
/ 2
2 sin s sin (KsNa - 1 4+ \) = E p, sin nsele8Nn -a
2

2[KNa - 1 sin s cos (KsVa - 1 + \) + cos s sin (KsNa - 1 + \)]

®
/ 2
= Epn [sin ns(Kan - o.)+ncos ns]eKs no-a
2
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PHASE ANGLE FOR
ALL EVANESCENT MODES

REFLECTED WAVE AT
OBLIQUE INCIDENCE

REFLECTED WAVE AT
NORMAL INCIDENCE

Fig. 2. Phase Angles on the Unit Circle
All evanscent modes have phase angle (n/2) - \ or (3w/2) - )\

where 2\ is the decrease in phase angle of the reflected mode
produced by the sloping shorted end.
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where all quantities are real. It is evident that Py A are functions only of
K, a and we are left with the vastly more difficult problem of determining

these quantities. To remove the y dependence, we integrate the equations
with respect to s from 0 to m,

The integrated equations are:

® -
2[sin \ + sin (KwNa - 1 +\)] - E P [1 _(_l)neKﬂVnz-a ]

1- Kz(a -~ 1) 2 nz + Kz(n2 - a)

and

to these we may add the relation

o)
2 sin \ = E Pn
2

The left side of the section equation vanishes because Ex vanishes at the wall.

=13
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IV. CONCLUDING COMMENTS

The three equations ohtained represent the conclusions of this phase of
the study. As we wish to find \K, a) and pn(K, a), it appears desirable to
conduct experiments with a number of waveguides of different degrees of
obliquity. This would determine directly the phase shift X\ as a function of

angle of obliquity 6 = cot XK for a given medium (a a fixed constant).

We may in this way obtain the clues needed to construct integral
representations that are capable of representing both members of the three
equations; that is, a knowledge of AMK) might indicate how to establish a
contour integral possessing residue terms that generate the sums and
uniquely determine all pn(K). It is difficult to see how to proceed without
such information because of the branch points n = £ na that exist. It is
probable that each Pr is an extremely complicated function of the parameters
n, K, a. The choice of particular numerical values for K or a does not

materially simplify the equations.

The results of the attempts made to date to solve the three equations
for X\, P, 28 functions of K, a are not promising, but do suggest some helpful
hints. It appears desirable to defer further results or discussion of approxi-

mate procedures to a subsequent report,

This phase of the study may be summarized as follows: The effect of
obliquity at the shorted end of a waveguide produces a phase shift in the
single propagating E mode which is allowed by the guide dimensions. The
magnitude of the phase shift 2\ is determined by the amplitudes of the
evanescent modes of the field near the sloping end. Both these amplitudes
and the phase shift are complicated functions of the angle of slope. All

evanescent modes possess the common phase angle, (3m/2)-\.

«]l5a
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